0
|
1 /* |
|
2 version 20081011 |
|
3 Matthew Dempsky |
|
4 Public domain. |
|
5 Derived from public domain code by D. J. Bernstein. |
|
6 */ |
|
7 |
|
8 //#include "crypto_scalarmult.h" |
|
9 |
|
10 static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
|
11 { |
|
12 unsigned int j; |
|
13 unsigned int u; |
|
14 u = 0; |
|
15 for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } |
|
16 u += a[31] + b[31]; out[31] = u; |
|
17 } |
|
18 |
|
19 static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
|
20 { |
|
21 unsigned int j; |
|
22 unsigned int u; |
|
23 u = 218; |
|
24 for (j = 0;j < 31;++j) { |
|
25 u += a[j] + 65280 - b[j]; |
|
26 out[j] = u & 255; |
|
27 u >>= 8; |
|
28 } |
|
29 u += a[31] - b[31]; |
|
30 out[31] = u; |
|
31 } |
|
32 |
|
33 static void squeeze(unsigned int a[32]) |
|
34 { |
|
35 unsigned int j; |
|
36 unsigned int u; |
|
37 u = 0; |
|
38 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } |
|
39 u += a[31]; a[31] = u & 127; |
|
40 u = 19 * (u >> 7); |
|
41 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } |
|
42 u += a[31]; a[31] = u; |
|
43 } |
|
44 |
|
45 static const unsigned int minusp[32] = { |
|
46 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 |
|
47 } ; |
|
48 |
|
49 static void freeze(unsigned int a[32]) |
|
50 { |
|
51 unsigned int aorig[32]; |
|
52 unsigned int j; |
|
53 unsigned int negative; |
|
54 |
|
55 for (j = 0;j < 32;++j) aorig[j] = a[j]; |
|
56 add(a,a,minusp); |
|
57 negative = -((a[31] >> 7) & 1); |
|
58 for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); |
|
59 } |
|
60 |
|
61 static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) |
|
62 { |
|
63 unsigned int i; |
|
64 unsigned int j; |
|
65 unsigned int u; |
|
66 |
|
67 for (i = 0;i < 32;++i) { |
|
68 u = 0; |
|
69 for (j = 0;j <= i;++j) u += a[j] * b[i - j]; |
|
70 for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; |
|
71 out[i] = u; |
|
72 } |
|
73 squeeze(out); |
|
74 } |
|
75 |
|
76 static void mult121665(unsigned int out[32],const unsigned int a[32]) |
|
77 { |
|
78 unsigned int j; |
|
79 unsigned int u; |
|
80 |
|
81 u = 0; |
|
82 for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } |
|
83 u += 121665 * a[31]; out[31] = u & 127; |
|
84 u = 19 * (u >> 7); |
|
85 for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } |
|
86 u += out[j]; out[j] = u; |
|
87 } |
|
88 |
|
89 static void square(unsigned int out[32],const unsigned int a[32]) |
|
90 { |
|
91 unsigned int i; |
|
92 unsigned int j; |
|
93 unsigned int u; |
|
94 |
|
95 for (i = 0;i < 32;++i) { |
|
96 u = 0; |
|
97 for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; |
|
98 for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; |
|
99 u *= 2; |
|
100 if ((i & 1) == 0) { |
|
101 u += a[i / 2] * a[i / 2]; |
|
102 u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; |
|
103 } |
|
104 out[i] = u; |
|
105 } |
|
106 squeeze(out); |
|
107 } |
|
108 |
|
109 static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) |
|
110 { |
|
111 unsigned int j; |
|
112 unsigned int t; |
|
113 unsigned int bminus1; |
|
114 |
|
115 bminus1 = b - 1; |
|
116 for (j = 0;j < 64;++j) { |
|
117 t = bminus1 & (r[j] ^ s[j]); |
|
118 p[j] = s[j] ^ t; |
|
119 q[j] = r[j] ^ t; |
|
120 } |
|
121 } |
|
122 |
|
123 static void mainloop(unsigned int work[64],const unsigned char e[32]) |
|
124 { |
|
125 unsigned int xzm1[64]; |
|
126 unsigned int xzm[64]; |
|
127 unsigned int xzmb[64]; |
|
128 unsigned int xzm1b[64]; |
|
129 unsigned int xznb[64]; |
|
130 unsigned int xzn1b[64]; |
|
131 unsigned int a0[64]; |
|
132 unsigned int a1[64]; |
|
133 unsigned int b0[64]; |
|
134 unsigned int b1[64]; |
|
135 unsigned int c1[64]; |
|
136 unsigned int r[32]; |
|
137 unsigned int s[32]; |
|
138 unsigned int t[32]; |
|
139 unsigned int u[32]; |
|
140 unsigned int i; |
|
141 unsigned int j; |
|
142 unsigned int b; |
|
143 int pos; |
|
144 |
|
145 for (j = 0;j < 32;++j) xzm1[j] = work[j]; |
|
146 xzm1[32] = 1; |
|
147 for (j = 33;j < 64;++j) xzm1[j] = 0; |
|
148 |
|
149 xzm[0] = 1; |
|
150 for (j = 1;j < 64;++j) xzm[j] = 0; |
|
151 |
|
152 for (pos = 254;pos >= 0;--pos) { |
|
153 b = e[pos / 8] >> (pos & 7); |
|
154 b &= 1; |
|
155 select(xzmb,xzm1b,xzm,xzm1,b); |
|
156 add(a0,xzmb,xzmb + 32); |
|
157 sub(a0 + 32,xzmb,xzmb + 32); |
|
158 add(a1,xzm1b,xzm1b + 32); |
|
159 sub(a1 + 32,xzm1b,xzm1b + 32); |
|
160 square(b0,a0); |
|
161 square(b0 + 32,a0 + 32); |
|
162 mult(b1,a1,a0 + 32); |
|
163 mult(b1 + 32,a1 + 32,a0); |
|
164 add(c1,b1,b1 + 32); |
|
165 sub(c1 + 32,b1,b1 + 32); |
|
166 square(r,c1 + 32); |
|
167 sub(s,b0,b0 + 32); |
|
168 mult121665(t,s); |
|
169 add(u,t,b0); |
|
170 mult(xznb,b0,b0 + 32); |
|
171 mult(xznb + 32,s,u); |
|
172 square(xzn1b,c1); |
|
173 mult(xzn1b + 32,r,work); |
|
174 select(xzm,xzm1,xznb,xzn1b,b); |
|
175 } |
|
176 |
|
177 for (j = 0;j < 64;++j) work[j] = xzm[j]; |
|
178 } |
|
179 |
|
180 static void recip(unsigned int out[32],const unsigned int z[32]) |
|
181 { |
|
182 unsigned int z2[32]; |
|
183 unsigned int z9[32]; |
|
184 unsigned int z11[32]; |
|
185 unsigned int z2_5_0[32]; |
|
186 unsigned int z2_10_0[32]; |
|
187 unsigned int z2_20_0[32]; |
|
188 unsigned int z2_50_0[32]; |
|
189 unsigned int z2_100_0[32]; |
|
190 unsigned int t0[32]; |
|
191 unsigned int t1[32]; |
|
192 int i; |
|
193 |
|
194 /* 2 */ square(z2,z); |
|
195 /* 4 */ square(t1,z2); |
|
196 /* 8 */ square(t0,t1); |
|
197 /* 9 */ mult(z9,t0,z); |
|
198 /* 11 */ mult(z11,z9,z2); |
|
199 /* 22 */ square(t0,z11); |
|
200 /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); |
|
201 |
|
202 /* 2^6 - 2^1 */ square(t0,z2_5_0); |
|
203 /* 2^7 - 2^2 */ square(t1,t0); |
|
204 /* 2^8 - 2^3 */ square(t0,t1); |
|
205 /* 2^9 - 2^4 */ square(t1,t0); |
|
206 /* 2^10 - 2^5 */ square(t0,t1); |
|
207 /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); |
|
208 |
|
209 /* 2^11 - 2^1 */ square(t0,z2_10_0); |
|
210 /* 2^12 - 2^2 */ square(t1,t0); |
|
211 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } |
|
212 /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); |
|
213 |
|
214 /* 2^21 - 2^1 */ square(t0,z2_20_0); |
|
215 /* 2^22 - 2^2 */ square(t1,t0); |
|
216 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } |
|
217 /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); |
|
218 |
|
219 /* 2^41 - 2^1 */ square(t1,t0); |
|
220 /* 2^42 - 2^2 */ square(t0,t1); |
|
221 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } |
|
222 /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); |
|
223 |
|
224 /* 2^51 - 2^1 */ square(t0,z2_50_0); |
|
225 /* 2^52 - 2^2 */ square(t1,t0); |
|
226 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } |
|
227 /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); |
|
228 |
|
229 /* 2^101 - 2^1 */ square(t1,z2_100_0); |
|
230 /* 2^102 - 2^2 */ square(t0,t1); |
|
231 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } |
|
232 /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); |
|
233 |
|
234 /* 2^201 - 2^1 */ square(t0,t1); |
|
235 /* 2^202 - 2^2 */ square(t1,t0); |
|
236 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } |
|
237 /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); |
|
238 |
|
239 /* 2^251 - 2^1 */ square(t1,t0); |
|
240 /* 2^252 - 2^2 */ square(t0,t1); |
|
241 /* 2^253 - 2^3 */ square(t1,t0); |
|
242 /* 2^254 - 2^4 */ square(t0,t1); |
|
243 /* 2^255 - 2^5 */ square(t1,t0); |
|
244 /* 2^255 - 21 */ mult(out,t1,z11); |
|
245 } |
|
246 |
|
247 int crypto_scalarmult(unsigned char *q, |
|
248 const unsigned char *n, |
|
249 const unsigned char *p) |
|
250 { |
|
251 unsigned int work[96]; |
|
252 unsigned char e[32]; |
|
253 unsigned int i; |
|
254 for (i = 0;i < 32;++i) e[i] = n[i]; |
|
255 e[0] &= 248; |
|
256 e[31] &= 127; |
|
257 e[31] |= 64; |
|
258 for (i = 0;i < 32;++i) work[i] = p[i]; |
|
259 mainloop(work,e); |
|
260 recip(work + 32,work + 32); |
|
261 mult(work + 64,work,work + 32); |
|
262 freeze(work + 64); |
|
263 for (i = 0;i < 32;++i) q[i] = work[64 + i]; |
|
264 return 0; |
|
265 } |