Mercurial > hg > quicktun
comparison src/crypto_scalarmult_curve25519.c @ 0:65c01f57bdce V2.1.2
Initial commit
author | ivo <ivo@UFO-Net.nl> |
---|---|
date | Thu, 07 Oct 2010 15:53:01 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
-1:000000000000 | 0:65c01f57bdce |
---|---|
1 /* | |
2 version 20081011 | |
3 Matthew Dempsky | |
4 Public domain. | |
5 Derived from public domain code by D. J. Bernstein. | |
6 */ | |
7 | |
8 //#include "crypto_scalarmult.h" | |
9 | |
10 static void add(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | |
11 { | |
12 unsigned int j; | |
13 unsigned int u; | |
14 u = 0; | |
15 for (j = 0;j < 31;++j) { u += a[j] + b[j]; out[j] = u & 255; u >>= 8; } | |
16 u += a[31] + b[31]; out[31] = u; | |
17 } | |
18 | |
19 static void sub(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | |
20 { | |
21 unsigned int j; | |
22 unsigned int u; | |
23 u = 218; | |
24 for (j = 0;j < 31;++j) { | |
25 u += a[j] + 65280 - b[j]; | |
26 out[j] = u & 255; | |
27 u >>= 8; | |
28 } | |
29 u += a[31] - b[31]; | |
30 out[31] = u; | |
31 } | |
32 | |
33 static void squeeze(unsigned int a[32]) | |
34 { | |
35 unsigned int j; | |
36 unsigned int u; | |
37 u = 0; | |
38 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } | |
39 u += a[31]; a[31] = u & 127; | |
40 u = 19 * (u >> 7); | |
41 for (j = 0;j < 31;++j) { u += a[j]; a[j] = u & 255; u >>= 8; } | |
42 u += a[31]; a[31] = u; | |
43 } | |
44 | |
45 static const unsigned int minusp[32] = { | |
46 19, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 128 | |
47 } ; | |
48 | |
49 static void freeze(unsigned int a[32]) | |
50 { | |
51 unsigned int aorig[32]; | |
52 unsigned int j; | |
53 unsigned int negative; | |
54 | |
55 for (j = 0;j < 32;++j) aorig[j] = a[j]; | |
56 add(a,a,minusp); | |
57 negative = -((a[31] >> 7) & 1); | |
58 for (j = 0;j < 32;++j) a[j] ^= negative & (aorig[j] ^ a[j]); | |
59 } | |
60 | |
61 static void mult(unsigned int out[32],const unsigned int a[32],const unsigned int b[32]) | |
62 { | |
63 unsigned int i; | |
64 unsigned int j; | |
65 unsigned int u; | |
66 | |
67 for (i = 0;i < 32;++i) { | |
68 u = 0; | |
69 for (j = 0;j <= i;++j) u += a[j] * b[i - j]; | |
70 for (j = i + 1;j < 32;++j) u += 38 * a[j] * b[i + 32 - j]; | |
71 out[i] = u; | |
72 } | |
73 squeeze(out); | |
74 } | |
75 | |
76 static void mult121665(unsigned int out[32],const unsigned int a[32]) | |
77 { | |
78 unsigned int j; | |
79 unsigned int u; | |
80 | |
81 u = 0; | |
82 for (j = 0;j < 31;++j) { u += 121665 * a[j]; out[j] = u & 255; u >>= 8; } | |
83 u += 121665 * a[31]; out[31] = u & 127; | |
84 u = 19 * (u >> 7); | |
85 for (j = 0;j < 31;++j) { u += out[j]; out[j] = u & 255; u >>= 8; } | |
86 u += out[j]; out[j] = u; | |
87 } | |
88 | |
89 static void square(unsigned int out[32],const unsigned int a[32]) | |
90 { | |
91 unsigned int i; | |
92 unsigned int j; | |
93 unsigned int u; | |
94 | |
95 for (i = 0;i < 32;++i) { | |
96 u = 0; | |
97 for (j = 0;j < i - j;++j) u += a[j] * a[i - j]; | |
98 for (j = i + 1;j < i + 32 - j;++j) u += 38 * a[j] * a[i + 32 - j]; | |
99 u *= 2; | |
100 if ((i & 1) == 0) { | |
101 u += a[i / 2] * a[i / 2]; | |
102 u += 38 * a[i / 2 + 16] * a[i / 2 + 16]; | |
103 } | |
104 out[i] = u; | |
105 } | |
106 squeeze(out); | |
107 } | |
108 | |
109 static void select(unsigned int p[64],unsigned int q[64],const unsigned int r[64],const unsigned int s[64],unsigned int b) | |
110 { | |
111 unsigned int j; | |
112 unsigned int t; | |
113 unsigned int bminus1; | |
114 | |
115 bminus1 = b - 1; | |
116 for (j = 0;j < 64;++j) { | |
117 t = bminus1 & (r[j] ^ s[j]); | |
118 p[j] = s[j] ^ t; | |
119 q[j] = r[j] ^ t; | |
120 } | |
121 } | |
122 | |
123 static void mainloop(unsigned int work[64],const unsigned char e[32]) | |
124 { | |
125 unsigned int xzm1[64]; | |
126 unsigned int xzm[64]; | |
127 unsigned int xzmb[64]; | |
128 unsigned int xzm1b[64]; | |
129 unsigned int xznb[64]; | |
130 unsigned int xzn1b[64]; | |
131 unsigned int a0[64]; | |
132 unsigned int a1[64]; | |
133 unsigned int b0[64]; | |
134 unsigned int b1[64]; | |
135 unsigned int c1[64]; | |
136 unsigned int r[32]; | |
137 unsigned int s[32]; | |
138 unsigned int t[32]; | |
139 unsigned int u[32]; | |
140 unsigned int i; | |
141 unsigned int j; | |
142 unsigned int b; | |
143 int pos; | |
144 | |
145 for (j = 0;j < 32;++j) xzm1[j] = work[j]; | |
146 xzm1[32] = 1; | |
147 for (j = 33;j < 64;++j) xzm1[j] = 0; | |
148 | |
149 xzm[0] = 1; | |
150 for (j = 1;j < 64;++j) xzm[j] = 0; | |
151 | |
152 for (pos = 254;pos >= 0;--pos) { | |
153 b = e[pos / 8] >> (pos & 7); | |
154 b &= 1; | |
155 select(xzmb,xzm1b,xzm,xzm1,b); | |
156 add(a0,xzmb,xzmb + 32); | |
157 sub(a0 + 32,xzmb,xzmb + 32); | |
158 add(a1,xzm1b,xzm1b + 32); | |
159 sub(a1 + 32,xzm1b,xzm1b + 32); | |
160 square(b0,a0); | |
161 square(b0 + 32,a0 + 32); | |
162 mult(b1,a1,a0 + 32); | |
163 mult(b1 + 32,a1 + 32,a0); | |
164 add(c1,b1,b1 + 32); | |
165 sub(c1 + 32,b1,b1 + 32); | |
166 square(r,c1 + 32); | |
167 sub(s,b0,b0 + 32); | |
168 mult121665(t,s); | |
169 add(u,t,b0); | |
170 mult(xznb,b0,b0 + 32); | |
171 mult(xznb + 32,s,u); | |
172 square(xzn1b,c1); | |
173 mult(xzn1b + 32,r,work); | |
174 select(xzm,xzm1,xznb,xzn1b,b); | |
175 } | |
176 | |
177 for (j = 0;j < 64;++j) work[j] = xzm[j]; | |
178 } | |
179 | |
180 static void recip(unsigned int out[32],const unsigned int z[32]) | |
181 { | |
182 unsigned int z2[32]; | |
183 unsigned int z9[32]; | |
184 unsigned int z11[32]; | |
185 unsigned int z2_5_0[32]; | |
186 unsigned int z2_10_0[32]; | |
187 unsigned int z2_20_0[32]; | |
188 unsigned int z2_50_0[32]; | |
189 unsigned int z2_100_0[32]; | |
190 unsigned int t0[32]; | |
191 unsigned int t1[32]; | |
192 int i; | |
193 | |
194 /* 2 */ square(z2,z); | |
195 /* 4 */ square(t1,z2); | |
196 /* 8 */ square(t0,t1); | |
197 /* 9 */ mult(z9,t0,z); | |
198 /* 11 */ mult(z11,z9,z2); | |
199 /* 22 */ square(t0,z11); | |
200 /* 2^5 - 2^0 = 31 */ mult(z2_5_0,t0,z9); | |
201 | |
202 /* 2^6 - 2^1 */ square(t0,z2_5_0); | |
203 /* 2^7 - 2^2 */ square(t1,t0); | |
204 /* 2^8 - 2^3 */ square(t0,t1); | |
205 /* 2^9 - 2^4 */ square(t1,t0); | |
206 /* 2^10 - 2^5 */ square(t0,t1); | |
207 /* 2^10 - 2^0 */ mult(z2_10_0,t0,z2_5_0); | |
208 | |
209 /* 2^11 - 2^1 */ square(t0,z2_10_0); | |
210 /* 2^12 - 2^2 */ square(t1,t0); | |
211 /* 2^20 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t0,t1); square(t1,t0); } | |
212 /* 2^20 - 2^0 */ mult(z2_20_0,t1,z2_10_0); | |
213 | |
214 /* 2^21 - 2^1 */ square(t0,z2_20_0); | |
215 /* 2^22 - 2^2 */ square(t1,t0); | |
216 /* 2^40 - 2^20 */ for (i = 2;i < 20;i += 2) { square(t0,t1); square(t1,t0); } | |
217 /* 2^40 - 2^0 */ mult(t0,t1,z2_20_0); | |
218 | |
219 /* 2^41 - 2^1 */ square(t1,t0); | |
220 /* 2^42 - 2^2 */ square(t0,t1); | |
221 /* 2^50 - 2^10 */ for (i = 2;i < 10;i += 2) { square(t1,t0); square(t0,t1); } | |
222 /* 2^50 - 2^0 */ mult(z2_50_0,t0,z2_10_0); | |
223 | |
224 /* 2^51 - 2^1 */ square(t0,z2_50_0); | |
225 /* 2^52 - 2^2 */ square(t1,t0); | |
226 /* 2^100 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } | |
227 /* 2^100 - 2^0 */ mult(z2_100_0,t1,z2_50_0); | |
228 | |
229 /* 2^101 - 2^1 */ square(t1,z2_100_0); | |
230 /* 2^102 - 2^2 */ square(t0,t1); | |
231 /* 2^200 - 2^100 */ for (i = 2;i < 100;i += 2) { square(t1,t0); square(t0,t1); } | |
232 /* 2^200 - 2^0 */ mult(t1,t0,z2_100_0); | |
233 | |
234 /* 2^201 - 2^1 */ square(t0,t1); | |
235 /* 2^202 - 2^2 */ square(t1,t0); | |
236 /* 2^250 - 2^50 */ for (i = 2;i < 50;i += 2) { square(t0,t1); square(t1,t0); } | |
237 /* 2^250 - 2^0 */ mult(t0,t1,z2_50_0); | |
238 | |
239 /* 2^251 - 2^1 */ square(t1,t0); | |
240 /* 2^252 - 2^2 */ square(t0,t1); | |
241 /* 2^253 - 2^3 */ square(t1,t0); | |
242 /* 2^254 - 2^4 */ square(t0,t1); | |
243 /* 2^255 - 2^5 */ square(t1,t0); | |
244 /* 2^255 - 21 */ mult(out,t1,z11); | |
245 } | |
246 | |
247 int crypto_scalarmult(unsigned char *q, | |
248 const unsigned char *n, | |
249 const unsigned char *p) | |
250 { | |
251 unsigned int work[96]; | |
252 unsigned char e[32]; | |
253 unsigned int i; | |
254 for (i = 0;i < 32;++i) e[i] = n[i]; | |
255 e[0] &= 248; | |
256 e[31] &= 127; | |
257 e[31] |= 64; | |
258 for (i = 0;i < 32;++i) work[i] = p[i]; | |
259 mainloop(work,e); | |
260 recip(work + 32,work + 32); | |
261 mult(work + 64,work,work + 32); | |
262 freeze(work + 64); | |
263 for (i = 0;i < 32;++i) q[i] = work[64 + i]; | |
264 return 0; | |
265 } |